login
A372259
Numbers k which have a factorization k = f_1*f_2*...*f_r where f_i >= 1 and the digits of {k, f_1, f_2, ..., f_r} together give 0,1,...,9 exactly once.
0
4830, 6970, 7056, 7096, 7290, 7690, 7830, 8370, 8596, 8652, 8790, 8970, 9076, 9360, 9370, 9380, 9670, 9706, 9720, 9730, 9870, 10752, 12780, 14760, 14820, 15628, 15678, 16038, 16704, 17082, 17820, 17920, 18720, 19084, 19240, 20457, 20574, 20754, 21658, 24056, 24507, 25803, 26180, 26910, 27504, 28156, 28651, 30296, 30576, 30752, 31920, 32760, 32890, 34902, 36508, 47320, 58401, 65128, 65821
OFFSET
1,1
COMMENTS
A370970 is a subsequence. In contrast to A370970, here the factors f_i are allowed to be equal to 1.
EXAMPLE
The complete list of terms:
4830 = 1*2*5*7*69
6970 = 1*2*3485
7056 = 1*3*24*98 = 1*3*8*294
7096 = 1*2*3548
7290 = 1*3*5*486
7690 = 1*2*3845
7830 = 1*6*29*45
8370 = 1*2*9*465
8596 = 2*14*307
8652 = 1*4*7*309
8790 = 2*3*1465
8970 = 1*26*345
9076 = 1*2*4538
9360 = 1*5*24*78 = 2*4*15*78
9370 = 1*2*4685
9380 = 2*5*14*67
9670 = 1*2*4835
9706 = 1*2*4853
9720 = 1*3*5*648
9730 = 1*2*4865
9870 = 2*3*1645
10752 = 3*4*896
12780 = 4*5*639
14760 = 5*9*328
14820 = 5*39*76
15628 = 4*3907
15678 = 39*402
16038 = 54*297 = 27*594
16704 = 9*32*58
17082 = 3*5694
17820 = 45*396 = 36*495
17920 = 8*35*64
18720 = 4*5*936
19084 = 52*367
19240 = 8*37*65
20457 = 3*6819
20574 = 6*9*381
20754 = 3*6918
21658 = 7*3094
24056 = 8*31*97
24507 = 3*8169
25803 = 9*47*61
26180 = 4*7*935
26910 = 78*345
27504 = 3*9168
28156 = 4*7039
28651 = 7*4093
30296 = 7*8*541
30576 = 8*42*91
30752 = 4*8*961
31920 = 5*76*84
32760 = 8*45*91
32890 = 46*715
34902 = 6*5817
36508 = 4*9127
47320 = 8*65*91
58401 = 63*927
65128 = 7*9304
65821 = 7*9403
CROSSREFS
KEYWORD
nonn,base,full,fini
AUTHOR
Chai Wah Wu, Apr 24 2024
STATUS
approved