login
A372203
E.g.f. A(x) satisfies A(x) = exp( 3 * x * (1 + x * A(x)^(1/3))^3 ).
0
1, 3, 27, 297, 4581, 87363, 2014389, 54516969, 1695624345, 59673787587, 2345478318369, 101896766246817, 4850500185441909, 251143864572078819, 14055460408215741069, 845667848072862801657, 54441943452534058086321, 3734566046400701428294275
OFFSET
0,2
FORMULA
E.g.f.: A(x) = B(x)^3 where B(x) is the e.g.f. of A365030.
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(s*k,n-k)/k!.
PROG
(PARI) a(n, r=3, s=3, t=0, u=1) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(s*k, n-k)/k!);
CROSSREFS
Sequence in context: A377238 A204821 A365156 * A200903 A365149 A318108
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 21 2024
STATUS
approved