OFFSET
1,2
FORMULA
E.g.f.: (5*x*log(-x^2 - x + 1) - sqrt(5)*(x - 2)*(log(2 - (sqrt(5) + 1)*x) -log((sqrt(5) - 1)*x + 2))) / (10*x*(x^2 + x - 1)).
D-finite with recurrence 5*a(n) +5*(-2*n+1)*a(n-1) +(-5*n^2+10*n+1)*a(n-2) +(10*n^3-45*n^2+58*n-14)*a(n-3) +(5*n^4-40*n^3+109*n^2-108*n+16)*a(n-4) +2*(n-4)^3*a(n-5) +(n-4)^2*(n-5)^2*a(n-6)=0. - R. J. Mathar, Apr 24 2024
MAPLE
H := proc(n)
add(1/i, i=1..n) ;
end proc:
A372199 := proc(n)
n!*A000045(n)*H(n) ;
end proc:
seq(A372199(n), n=1..70) ; # R. J. Mathar, Apr 24 2024
MATHEMATICA
a[n_] := n! Fibonacci[n] HarmonicNumber[n]; Array[a, 20] (* Stefano Spezia, Apr 22 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Apr 21 2024
STATUS
approved