login
A372121
Row sums of A371783 and A371954 (k-quanimous partitions).
2
1, 3, 4, 9, 8, 22, 16, 42, 41, 74, 57, 183, 102, 233
OFFSET
1,2
COMMENTS
A finite multiset of numbers is defined to be k-quanimous iff it can be partitioned into k multisets with equal sums. The triangles A371783 and A371954 count k-quanimous partitions.
MATHEMATICA
hwt[n_]:=Total[Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Sum[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]], {k, Divisors[n]}], {n, 1, 10}]
CROSSREFS
Row sums of A371783.
Row sums of A371954.
A000005 counts divisors.
A000041 counts integer partitions.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A321452 counts quanimous partitions, complement A321451.
A371796 counts quanimous sets, differences A371797.
Sequence in context: A280616 A317099 A317715 * A305551 A306018 A076120
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Apr 20 2024
STATUS
approved