login
Numbers k where records occur for d(k)/d(k+1), where d(k) is the number of divisors of k (A000005).
2

%I #14 Apr 20 2024 10:49:49

%S 1,2,4,6,12,30,36,60,180,240,420,1008,1320,1800,2160,2520,6300,7560,

%T 12600,15120,20160,30240,45360,55440,100800,110880,196560,332640,

%U 498960,786240,982800,1108800,1580040,1940400,1995840,2402400,3880800,4324320,11476080,11531520

%N Numbers k where records occur for d(k)/d(k+1), where d(k) is the number of divisors of k (A000005).

%C This sequence is infinite (Schinzel, 1954).

%C Is a(n) = A103199(n) - 1?

%C From _Michael De Vlieger_, Apr 19 2024: (Start)

%C a(12) = 1008 = 2^4 * 3^2 * 7 is the smallest term that is not a product of primorials.

%C a(36) = 2402400 = 2^5 * 3^1 * 5^2 * 7 * 11 * 13 is the smallest term whose exponents are not nonincreasing as prime base increases (ignoring interposing nondivisor primes). (End)

%H Amiram Eldar, <a href="/A372092/b372092.txt">Table of n, a(n) for n = 1..69</a>

%H Michael De Vlieger, <a href="/A372092/a372092.txt">Prime power decomposition of a(n)</a>, n = 1..69.

%H Andrzej Schinzel, <a href="https://doi.org/10.5486/PMD.1954.3.3-4.11">Sur une propriété du nombre de diviseurs</a>, Publ. Math. (Debrecen), Vol. 3 (1954), pp. 261-262.

%t seq[kmax_] := Module[{d1 = 1, d2, rm = 0, r, s = {}}, Do[d2 = DivisorSigma[0, k]; r = d1 / d2; If[r > rm, rm = r; AppendTo[s, k-1]]; d1 = d2, {k, 2, kmax}]; s]; seq[10^6]

%o (PARI) lista(kmax) = {my(d1 = 1, d2, rm = 0, r); for(k = 2, kmax, d2 = numdiv(k); r = d1 / d2; if(r > rm, rm = r; print1(k-1, ", ")); d1 = d2);}

%Y Cf. A000005, A103199, A282531.

%K nonn

%O 1,2

%A _Amiram Eldar_, Apr 18 2024