login
A372085
Primes starting a sequence of 6 consecutive primes with gaps 2, 4, 8, 16, 32.
2
6824897, 10132607, 12674657, 13699457, 14148047, 27353237, 43918997, 44152307, 50608007, 53944337, 60426257, 60825827, 61325057, 68721047, 68933717, 72069707, 78577817, 82108127, 82334297, 87020177, 88226777, 97013927, 102043757, 106053917, 122271557, 140859707, 146049047, 161788787, 162036227
OFFSET
1,1
COMMENTS
First differs from A079015 at a(25) = 122271557.
All terms == 7 (mod 10).
EXAMPLE
a(3) = 12674657 is a term because 12674657 is prime and the next five primes are 12674657 + 2 = 12674659, 12674659 + 4 = 12674663, 12674663 + 8 = 12674671, 12674671 + 16 = 12674687 and 12674687 + 32 = 12674719.
MAPLE
p:= 2: state:= 1: count:= 0: Res:= NULL:
while count < 100 do
q:= nextprime(p);
if q - p = 2^state then
state:= state+1;
if state = 6 then
count:= count+1; Res:= Res, q-62;
fi;
else state:= 1
fi;
p:= q;
od:
Res;
CROSSREFS
Cf. A079015, A372248 (gaps 2,4,8,16).
Sequence in context: A346282 A088238 A079015 * A185435 A185427 A185426
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Apr 17 2024
STATUS
approved