login
A371994
Triangle read by rows: Related to the Euler numbers.
2
1, 0, 1, 0, 1, 5, 0, 1, 19, 61, 0, 1, 42, 498, 1385, 0, 1, 74, 1932, 19238, 50521, 0, 1, 115, 5290, 114830, 1057475, 2702765, 0, 1, 165, 11805, 449539, 8949633, 79160457, 199360981, 0, 1, 224, 23016, 1360198, 47306246, 899141244, 7768928932, 19391512145
OFFSET
0,6
COMMENTS
Inspired by Philippe Deléham's formula for A371637.
FORMULA
Triangle T given by [0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 4, 9, 16, 25, 36, ...] where DELTA is the operator defined by Deléham in A084938.
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 5]
[3] [0, 1, 19, 61]
[4] [0, 1, 42, 498, 1385]
[5] [0, 1, 74, 1932, 19238, 50521]
[6] [0, 1, 115, 5290, 114830, 1057475, 2702765]
[7] [0, 1, 165, 11805, 449539, 8949633, 79160457, 199360981]
PROG
(SageMath) # Using function GeneralizedDelehamDelta from A372001.
def A371994_triangle(dim):
a = lambda n: n % 2
b = lambda n: (n + 1)^2
return GeneralizedDelehamDelta([a, b], dim, False)
for row in A371994_triangle(8): print(row)
CROSSREFS
Cf. A000364 (main diagonal), A371637, A371765 (row sums), A372001.
Cf. A084938.
Sequence in context: A222061 A345453 A064315 * A227322 A216718 A184180
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 21 2024
STATUS
approved