%I #15 Apr 21 2024 07:35:25
%S 2,9,4,5,4,7,7,9,7,4,5,6,9,9,6,9,4,0,1,9,6,9,6,2,0,8,2,8,8,6,3,8,3,4,
%T 5,7,3,4,7,0,1,8,7,3,6,0,5,5,7,2,9,7,1,1,0,4,6,5,6,5,4,1,5,5,6,7,4,9,
%U 8,8,0,5,4,5,9,9,0,5,0,1,2,0,8,2,1,9,5,7,9,4,8,5,0,9,6,5,2,1,2,9,3,8,7,6,7
%N Decimal expansion of Gamma(1/30).
%H Albert Nijenhuis, <a href="http://arxiv.org/abs/0907.1689">Small Gamma Products with Simple Values</a>, arXiv:0907.1689v1 [math.CA], 2009.
%H R. Vidunas, <a href="http://arxiv.org/abs/math/0403510">Expressions for values of the Gamma function</a>, arxiv:math/0403510 [math.CA], 2004.
%H <a href="/index/Ga#gamma_function">Index to sequences related to gamma function</a>
%F Equals 3^(9/20) * sqrt(5 + sqrt(5)) * sqrt(sqrt(15) + sqrt(5 + 2*sqrt(5))) * Gamma(1/3) * Gamma(1/5) / (sqrt(Pi) * 2^(16/15) * 5^(1/6)).
%F Equals 2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma(1/5) * Gamma(1/3) / ((10 + sqrt(5) - sqrt(75 + 30*sqrt(5)))^(1/4) * sqrt(Pi)).
%F Equals 8*Pi^2 / (Gamma(17/30) * Gamma(19/30) * Gamma(23/30)).
%F Equals Gamma(7/30) * Gamma(11/30) * Gamma(13/30) / (2*Pi*A019815).
%e 29.4547797456996940196962082886383457347018736055729711046565415567498...
%p evalf(GAMMA(1/30), 130); # _Alois P. Heinz_, Apr 15 2024
%t RealDigits[Gamma[1/30], 10, 120][[1]]
%t RealDigits[2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma[1/5] * Gamma[1/3] / ((10 + Sqrt[5] - Sqrt[75 + 30*Sqrt[5]])^(1/4) * Sqrt[Pi]), 10, 120][[1]]
%Y Cf. A073005, A175380, A256191, A203140, A371881.
%K nonn,cons
%O 2,1
%A _Vaclav Kotesovec_, Apr 15 2024