login
A371910
Position of A109890(n) among the sorted set of divisors of A109735(n-1).
3
2, 4, 4, 4, 7, 6, 3, 4, 9, 5, 6, 12, 9, 9, 11, 14, 9, 13, 9, 4, 4, 3, 6, 7, 6, 10, 12, 5, 5, 6, 8, 9, 13, 12, 4, 15, 5, 3, 4, 6, 8, 4, 9, 17, 7, 2, 5, 3, 8, 7, 6, 13, 8, 17, 6, 7, 4, 9, 10, 8, 13, 17, 15, 7, 3, 7, 13, 5, 6, 16, 8, 11, 8, 5, 4, 13, 12, 17, 5, 6
OFFSET
3,1
COMMENTS
A109890(n) is the a(n)-th smallest divisor of A109735(n-1).
LINKS
FORMULA
1 < a(n) <= A371909(n), where A371909(n) = A000005(A109735(n-1)), corollary of Sloane's theorem in the comments in A109890.
A109890(n) = T(j, k), where T = A027750, j = A109735(n-1), and k = a(n).
A371909(n) = A371910(n) if and only if A109890(n) = A109735(n-1).
EXAMPLE
Table relating sequences b = A109890, s = A109735, c = A371909. a(n) = c(n) implies both A111315(i) = n and A111316(i) = b(n) = s(n-1).
n b(n) s(n-1) a(n) c(n) i
--------------------------------------
3 3 = 3 2 2 1
4 6 = 6 4 4 2
5 4 12 4 6
6 8 16 4 5
7 12 24 7 8
8 9 36 6 9
9 5 45 3 6
10 10 50 4 6
11 15 60 9 12
12 25 75 5 6
...
222 113573 = 113573 4 4 3
...
232 230801 = 230801 4 4 4
...
279 941071 = 941071 4 4 5
...
MATHEMATICA
nn = 120; c[_] := False;
Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
Reap[Do[d = Divisors[s]; k = SelectFirst[d, ! c[#] &];
c[k] = True; Sow[FirstPosition[d, k][[1]]];
s += k, {n, 3, nn}] ][[-1, 1]]
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Apr 26 2024
STATUS
approved