login
A371871
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-2,n-3*k).
3
1, 0, 1, 5, 18, 66, 246, 924, 3493, 13277, 50697, 194327, 747319, 2882061, 11142027, 43167573, 167561586, 651513594, 2537041938, 9892847952, 38623197264, 150959213886, 590626854072, 2312979822738, 9065733950526, 35561306875380, 139595183125750
OFFSET
0,4
FORMULA
a(n) = [x^n] 1/((1-x^3) * (1-x)^(n-1)).
D-finite with recurrence 9*n*a(n) +3*(-17*n+16)*a(n-1) +3*(21*n-50)*a(n-2) +(-17*n+16)*a(n-3) +10*(2*n-5)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
MAPLE
A371871 := proc(n)
1/(1-x^3)/(1-x)^(n-1) ;
coeftayl(%, x=0, n) ;
end proc:
seq(A371871(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-3*k-2, n-3*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 10 2024
STATUS
approved