login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes whose second, third, fourth and fifth digits are 2345.
2

%I #14 Apr 09 2024 22:03:23

%S 123457,423457,523459,723451,823451,823457,923453,1234511,1234517,

%T 1234531,1234537,1234543,1234547,1234577,2234501,2234503,2234513,

%U 2234539,2234543,2234549,2234563,2234579,2234587,2234591,2234593,2234597,3234533,3234551,3234599,4234501,4234537,5234513,5234543,5234549

%N Primes whose second, third, fourth and fifth digits are 2345.

%C This sequence is infinite by the Prime Number Theorem. - _Charles R Greathouse IV_, Apr 09 2024

%H Robert Israel, <a href="/A371845/b371845.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ≍ n log n. The ratio a(n)/(n log n) is bounded but does not have a limit. - _Charles R Greathouse IV_, Apr 09 2024

%p R:= NULL: count:= 0:

%p for d from 0 while count < 100 do

%p for a from 1 to 9 while count < 100 do

%p for b from 1 to 10^d-1 by 2 while count < 100 do

%p x:= b + 10^d*(2345 + 10000*a);

%p if isprime(x) then

%p count:= count+1; R:= R, x

%p fi

%p od od od:

%p R;

%t p = 12345; s = {}; Do[p = NextPrime[p];

%t If[2 == IntegerDigits[p][[2]] && 3 == IntegerDigits[p][[3]] && 4 ==IntegerDigits[p][[4]] && 5 == IntegerDigits[p][[5]], AppendTo[s, p]],

%t {1000000}]; s

%o (Python)

%o from itertools import count, islice

%o from sympy import primerange

%o def A371845_gen(): # generator of terms

%o for l in count(1):

%o m = 10**l

%o for a in range(1,10):

%o b = (a*10**4+2345)*m

%o yield from primerange(b,b+m)

%o A371845_list = list(islice(A371845_gen(),20)) # _Chai Wah Wu_, Apr 09 2024

%Y Cf. A371833.

%K nonn,base

%O 1,1

%A _Zak Seidov_ and _Robert Israel_, Apr 08 2024