OFFSET
0,6
COMMENTS
EXAMPLE
The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is counted under a(10).
The a(0) = 1 through a(10) = 11 partitions:
() . . (21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4321)
(4311) (4411)
(5211) (5221)
(222111) (5311)
(6211)
(322111)
MATHEMATICA
biqQ[y_]:=MemberQ[Total/@Subsets[y], Total[y]/2];
Table[Length[Select[IntegerPartitions[n], biqQ[Length/@Split[#]]&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 18 2024
STATUS
approved