login
A371725
G.f. satisfies A(x) = ( 1 + x * A(x)^(1/5) * (1 + A(x)) )^(5/2).
2
1, 5, 25, 145, 925, 6266, 44245, 322075, 2399725, 18211775, 140285018, 1093997085, 8620125925, 68523526635, 548867710575, 4425604018075, 35892727867805, 292604563615625, 2396375011877275, 19707111724556025, 162671328783723678, 1347313142469049275
OFFSET
0,2
FORMULA
G.f.: B(x)^5 where B(x) is the g.f. of A370472.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+5*k/2+5/2,n)/(n/5+k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+5*k/2+5/2, n)/(n/5+k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 04 2024
STATUS
approved