login
A371724
G.f. satisfies A(x) = ( 1 + x * A(x)^(1/3) * (1 + A(x)) )^(3/2).
2
1, 3, 9, 31, 117, 468, 1949, 8361, 36693, 163956, 743388, 3411576, 15816609, 73967637, 348517539, 1652896367, 7884305829, 37800279504, 182055056428, 880410972156, 4273376488956, 20811901707192, 101666716335912, 498035242836144, 2446003588237193, 12041562653655453
OFFSET
0,2
FORMULA
G.f.: B(x)^3 where B(x) is the g.f. of A106228.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+3*k/2+3/2,n)/(n/3+k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+3*k/2+3/2, n)/(n/3+k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 04 2024
STATUS
approved