login
A371700
G.f. satisfies A(x) = 1 + x * A(x)^6 * (1 + A(x)).
1
1, 2, 26, 482, 10450, 247554, 6208970, 162064322, 4356511138, 119788611458, 3353361311738, 95251219926690, 2738421518770546, 79531905952256642, 2329955712706784682, 68770993359030211458, 2043143866891345880898, 61050342965542475675906
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(6*n+k+1,n)/(6*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(7*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * binomial(n,k) * binomial(6*n,k-1) for n > 0.
PROG
(PARI) a(n, r=1, t=6, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 03 2024
STATUS
approved