login
A371675
G.f. satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2))^2.
4
1, 4, 32, 324, 3696, 45316, 583152, 7769348, 106250144, 1482925956, 21037812352, 302478044996, 4397824031376, 64549296707460, 955150116019920, 14233474784850948, 213417133281087040, 3217460713030341892, 48741781832765496288, 741606216370357708612
OFFSET
0,2
FORMULA
G.f. satisfies A(x) = ( 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2)) )^2.
G.f.: B(x)^2 where B(x) is the g.f. of A144097.
a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(3*n+k+2,n)/(3*n+k+2).
PROG
(PARI) a(n, r=2, t=3, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 02 2024
STATUS
approved