login
A371603
a(n) = Product_{k=0..n} binomial(n^2, k^2).
4
1, 1, 4, 1134, 333132800, 1319947441510156250, 876533819183888230348458418944000, 1185269534290897564185384010731432113450477770983533184
OFFSET
0,3
FORMULA
a(n) = (n^2)!^(n+1) / (A255322(n) * A371624(n)).
a(n) ~ c * exp(2*n*(2*n^2/3 + 1)) / (A^(2*n) * 2^(4*n*(n^2 + 1)/3) * Pi^(n/2) * n^(7*n/6 - 1/4)), where c = 0.6367427... and A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
Table[Product[Binomial[n^2, k^2], {k, 0, n}], {n, 0, 8}]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 30 2024
STATUS
approved