login
A371601
Nonsquarefree numbers whose largest nonunitary prime divisor is smaller than their smallest unitary prime divisor, if it exists.
1
4, 8, 9, 12, 16, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 52, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 169, 171, 172, 175, 176
OFFSET
1,1
COMMENTS
Subsequence of A283050 and first differs from it at n = 100: A283050(100) = 300 = 2^2 * 3 * 5^2 is not a term of this sequence.
Powerful numbers and nonpowerful numbers k such that 1 < A249740(k) < A277698(k), or equivalently, 1 < A006530(A057521(k)) < A020639(A055231(k)).
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} f(p)/(p^2-p+1) = 0.32131800923..., where f(p) = Product_{primes q <= p} (q^2-q+1)/(q^2-1).
LINKS
MATHEMATICA
q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[e] > 1 && (Min[e] > 1 || Max[e[[FirstPosition[e, 1][[1]] ;; -1]]] == 1)]; Select[Range[200], q]
PROG
(PARI) is(n) = {my(e = apply(x->if(x > 1, 2, 1), factor(n)[, 2])); n > 1 && vecmax(e) > 1 && vecsort(e, , 4) == e; }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Mar 29 2024
STATUS
approved