login
A371540
G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^5.
4
1, 5, 35, 310, 3055, 32151, 353755, 4019825, 46808750, 555621400, 6698027100, 81779512155, 1009194553315, 12567338972700, 157725047958100, 1992990741398625, 25333585976926275, 323725357496659565, 4156196637610760235, 53585106340408250725, 693491493195479127175
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+4,k)/(k+1).
G.f.: A(x) = B(x)^5 where B(x) is the g.f. of A349362.
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+4, k)/(k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 26 2024
STATUS
approved