Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Apr 16 2024 13:34:48
%S 1,2,10,80,838,10952,171910,3148280,65890198,1551389192,40586247910,
%T 1167964662680,36666464437558,1247011549249832,45672691012357510,
%U 1792280373542404280,75021202465129000918,3336499249170658956872,157116438405334017308710,7809681380575733223237080,408621675981135189773468278
%N Binomial transform of A355409.
%F a(0) = 1, a(n) = (-1)^n + Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
%F a(0) = 1, a(n) = 1 + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0.
%F E.g.f.: exp(x)/(1 + exp(2*x) - exp(3*x)).
%o (SageMath)
%o def a(n):
%o if n==0:
%o return 1
%o else:
%o return (-1)^n + sum([(1-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]])
%o list(a(n) for n in [0,..,20])
%o (SageMath)
%o f= e^(x)/(1 + e^(2*x) - e^(3*x))
%o print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]])
%Y Cf. A355409.
%K nonn
%O 0,2
%A _Prabha Sivaramannair_, Mar 24 2024