login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371458
Expansion of 1/(1 - x/(1 - 9*x^3)^(1/3)).
6
1, 1, 1, 1, 4, 7, 10, 31, 61, 100, 274, 565, 1000, 2551, 5380, 10000, 24376, 52018, 100000, 236389, 507706, 1000000, 2313346, 4986178, 10000000, 22773334, 49180165, 100000000, 225092416, 486575935, 1000000000, 2231117230, 4824998773, 10000000000
OFFSET
0,5
FORMULA
a(3*n) = 10^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(n/3-1,k).
D-finite with recurrence (n-1)*(n-2)*a(n) +4*(-7*n^2+48*n-86)*a(n-3) +9*(29*n-141)*(n-6)*a(n-6) -810*(n-6)*(n-9)*a(n-9)=0. - R. J. Mathar, Jun 07 2024
a(n) == 1 (mod 3). - Seiichi Manyama, Jun 11 2024
MAPLE
A371458 := proc(n)
add(9^k*binomial(n/3-1, k), k=0..floor(n/3)) ;
end proc:
seq(A371458(n), n=0..70) ; # R. J. Mathar, Jun 07 2024
PROG
(PARI) a(n) = sum(k=0, n\3, 9^k*binomial(n/3-1, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 07 2024
STATUS
approved