login
A371400
Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).
3
1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
OFFSET
0,2
COMMENTS
The main diagonal and column 0 of the triangle are the central binomial coefficients, which are the sums of the squares of Pascal's triangle entries. This sum representation can be generalized, and all terms can be seen as sums of coefficients of some polynomials. (See the Example section.)
To see this, consider T(n, k) as the value of the polynomials P(n, k)(x) at x = 1, where P(n, k)(x) = H([-n, -k], [1], x)*H([-n, -n + k], [1], x) and H denotes the hypergeometric sum 2F1. For instance column 0 is given by the row sums of A008459, and column 1 by the row sums of A371401.
FORMULA
T(n, k) = A046899(n, k) * A092392(n, k).
T(n, k) = A046899(n, k) * A046899(n, n - k).
T(n, k) = A092392(n, k) * A092392(n, n - k).
T(n, k) = A371395(n, k) * (n + 1).
T(n, k) = hypergeom([-n, -k], [1], 1) * hypergeom([-n, -n + k], [1], 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A244038(n).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A371399(n).
EXAMPLE
Triangle starts:
[0] 1;
[1] 2, 2;
[2] 6, 9, 6;
[3] 20, 40, 40, 20;
[4] 70, 175, 225, 175, 70;
[5] 252, 756, 1176, 1176, 756, 252;
[6] 924, 3234, 5880, 7056, 5880, 3234, 924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0: [1]
1: [1+1]
2: [1+4+1], [1+4+4]
3: [1+9+9+1], [1+9+21+9]
4: [1+16+36+16+1], [1+16+66+76+16], [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
MAPLE
T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
MATHEMATICA
T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
Table[T[n, k], {n, 0, 7}, {k, 0, n}]
CROSSREFS
Column 0 and main diagonal are A000984.
Column 1 and subdiagonal are A097070.
Row sums are A045721.
The even bisection of the alternating row sums is A005809.
The central terms are A188662.
Sequence in context: A242978 A345308 A231137 * A188808 A021819 A359896
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Mar 21 2024
STATUS
approved