login
A371324
Decimal expansion of Sum_{k>=1} (-1)^(k+1)/(2^k * Fibonacci(k!)).
3
2, 6, 5, 6, 2, 3, 6, 5, 2, 0, 8, 7, 6, 4, 6, 6, 5, 2, 8, 6, 4, 0, 4, 4, 1, 7, 4, 2, 2, 4, 0, 0, 3, 5, 9, 0, 8, 6, 2, 0, 0, 9, 0, 9, 6, 8, 9, 1, 3, 7, 5, 5, 5, 7, 4, 3, 0, 4, 7, 3, 3, 0, 7, 3, 1, 3, 1, 1, 5, 8, 0, 8, 3, 1, 3, 8, 2, 0, 5, 2, 5, 9, 3, 8, 2, 7, 4, 8, 9, 5, 9, 5, 3, 3, 6, 3, 7, 1, 0, 6, 9, 4, 3, 2, 5
OFFSET
0,1
COMMENTS
The transcendence of this constant was proved by Nyblom (2004).
LINKS
M. A. Nyblom, An extension of a result of SierpiƄski, Journal of Number Theory, Vol. 105, No. 1 (2004), pp. 49-59.
EXAMPLE
0.26562365208764665286404417422400359086200909689137...
MATHEMATICA
RealDigits[-Sum[(-1/2)^k/Fibonacci[k!], {k, 1, 10}], 10, 120][[1]]
PROG
(PARI) suminf(k = 1, -(-1/2)^k/fibonacci(k!))
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Mar 19 2024
STATUS
approved