login
A371297
E.g.f. satisfies A(x) = 1/(1 + 2*log(1 - x*A(x)^2)).
1
1, 2, 26, 676, 26852, 1443888, 98183024, 8083614880, 781958648448, 86940057459840, 10925288128027968, 1531414930604605440, 236905910564035082112, 40093453025252047368192, 7368774639911257328778240, 1461607086204159742139338752, 311206233406111454756938844160
OFFSET
0,2
FORMULA
a(n) = (1/(2*n+1)!) * Sum_{k=0..n} 2^k * (2*n+k)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = sum(k=0, n, 2^k*(2*n+k)!*abs(stirling(n, k, 1)))/(2*n+1)!;
CROSSREFS
Cf. A367138.
Sequence in context: A090247 A371296 A373869 * A206601 A156211 A156212
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2024
STATUS
approved