%I #7 Mar 16 2024 11:57:52
%S 1,0,2,3,8,150,84,5040,39808,72576,5598000,19617840,392747904,
%T 9837828000,23366133504,2120992080480,23679285857280,236064853301760,
%U 13280228754130944,79239777198727680,3793985724604769280,97004042539092541440,781106411330024693760
%N Expansion of e.g.f. 1/(1 - x * log(1 + x + x^2)).
%F a(n) = n! * Sum_{j=0..n} Sum_{k=0..j} k! * binomial(j,n-j-k) * Stirling1(j,k)/j!.
%o (PARI) a(n) = n!*sum(j=0, n, sum(k=0, j, k!*binomial(j, n-j-k)*stirling(j, k, 1)/j!));
%Y Cf. A371196, A371226.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Mar 15 2024