login
A371225
Expansion of e.g.f. 1/(1 - x * log(1 + x + x^2)).
1
1, 0, 2, 3, 8, 150, 84, 5040, 39808, 72576, 5598000, 19617840, 392747904, 9837828000, 23366133504, 2120992080480, 23679285857280, 236064853301760, 13280228754130944, 79239777198727680, 3793985724604769280, 97004042539092541440, 781106411330024693760
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{j=0..n} Sum_{k=0..j} k! * binomial(j,n-j-k) * Stirling1(j,k)/j!.
PROG
(PARI) a(n) = n!*sum(j=0, n, sum(k=0, j, k!*binomial(j, n-j-k)*stirling(j, k, 1)/j!));
CROSSREFS
Sequence in context: A079938 A324006 A112237 * A132502 A113840 A336292
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 15 2024
STATUS
approved