login
E.g.f. satisfies A(x) = 1 - x*A(x)*log(1 - x*A(x)).
9

%I #12 Sep 19 2024 11:06:18

%S 1,0,2,3,56,330,5724,68460,1351552,24594192,578257200,13915923120,

%T 389216689344,11518744311360,377576873670528,13185760854520800,

%U 497969104450867200,19992393239486976000,856421361373185137664,38819358713756193292800

%N E.g.f. satisfies A(x) = 1 - x*A(x)*log(1 - x*A(x)).

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F a(n) = (n!)^2 * Sum_{k=0..floor(n/2)} |Stirling1(n-k,k)|/( (n-k)! * (n-k+1)! ).

%F E.g.f.: (1/x) * Series_Reversion( x/(1 - x*log(1 - x)) ). - _Seiichi Manyama_, Sep 19 2024

%o (PARI) a(n) = n!^2*sum(k=0, n\2, abs(stirling(n-k, k, 1))/((n-k)!*(n-k+1)!));

%Y Cf. A370993, A371117, A371122.

%Y Cf. A371119.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Mar 11 2024