login
A370876
Expansion of e.g.f. (1/x) * Series_Reversion( x/(x + exp(x^3)) ).
3
1, 1, 2, 12, 120, 1320, 17640, 304920, 6249600, 143579520, 3711052800, 107762054400, 3455138332800, 120802387305600, 4583177081683200, 187766031131078400, 8256125218115174400, 387662886088250572800, 19364540503274942976000, 1025507260911983244595200
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(k-1) * binomial(n,3*k)/k!.
E.g.f.: (LambertW( -3*x^3/(1-x)^3 ) / (-3*x^3))^(1/3).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(x+exp(x^3)))/x))
(PARI) a(n) = n!*sum(k=0, n\3, (3*k+1)^(k-1)*binomial(n, 3*k)/k!);
CROSSREFS
Cf. A360609.
Sequence in context: A286629 A361595 A378095 * A329851 A127112 A365283
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 03 2024
STATUS
approved