%I #8 Mar 02 2024 03:15:04
%S 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,2,1,1,1,1,6,5,2,1,1,1,1,11,12,5,2,
%T 1,1,1,1,23,39,15,5,2,1,1,1,1,47,136,58,15,5,2,1,1,1,1,106,529,275,64,
%U 15,5,2,1,1,1,1,235,2171,1505,331,64,15,5,2,1,1,1
%N Triangle read by rows: T(n,k) is the number of k-trees with n unlabeled nodes.
%H Allan Bickle, <a href="https://doi.org/10.20429/tag.2024.000105">A Survey of Maximal k-degenerate Graphs and k-Trees</a>, Theory and Applications of Graphs 0 1 (2024) Article 5.
%H Andrew Gainer-Dewar, <a href="https://doi.org/10.37236/2615">Gamma-Species and the Enumeration of k-Trees</a>, Electronic Journal of Combinatorics, Volume 19 (2012), #P45.
%H I. M. Gessel and A. Gainer-Dewar, <a href="http://arxiv.org/abs/1309.1429">Counting unlabeled k-trees</a>, arXiv:1309.1429 [math.CO], 2013-2014.
%H I. M. Gessel and A. Gainer-Dewar, <a href="https://doi.org/10.1016/j.jcta.2014.05.002">Counting unlabeled k-trees</a>, J. Combin. Theory Ser. A 126 (2014), 177-193.
%H Andrew Howroyd, <a href="/A370770/a370770.txt">SageMath Program code</a> (from Andrew Gainer-Dewar reference).
%F T(n,k) = A370771(n,k) + A370772(n,k) - A370773(n,k).
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 1, 1, 1;
%e 1, 2, 1, 1, 1;
%e 1, 3, 2, 1, 1, 1;
%e 1, 6, 5, 2, 1, 1, 1;
%e 1, 11, 12, 5, 2, 1, 1, 1;
%e 1, 23, 39, 15, 5, 2, 1, 1, 1;
%e 1, 47, 136, 58, 15, 5, 2, 1, 1, 1;
%e 1, 106, 529, 275, 64, 15, 5, 2, 1, 1, 1;
%e ...
%Y Columns k=0..7 are A000012, A000055, A054581, A078792, A078793, A201702, A202037, A322754.
%Y Cf. A135021 (labeled version), A370771, A370772, A370773.
%K nonn,tabl
%O 0,12
%A _Andrew Howroyd_, Mar 01 2024