login
A370617
Coefficient of x^n in the expansion of 1 / (1-x-x^2)^(2*n).
2
1, 2, 14, 98, 726, 5522, 42770, 335512, 2656998, 21195944, 170076214, 1371181110, 11098310730, 90128497032, 734008622872, 5992486341248, 49028047353670, 401885885751630, 3299812135410080, 27134786911366212, 223433635272820126, 1842041118321640390
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(3*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^2 ). See A368961.
PROG
(PARI) a(n, s=2, t=2, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
Cf. A368961.
Sequence in context: A322262 A109808 A304444 * A247481 A037516 A037719
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 30 2024
STATUS
approved