login
A370580
a(n) = (n-1)! * Sum_{d|n} d/(d-1)!.
3
1, 3, 5, 22, 29, 546, 727, 18488, 100809, 1164250, 3628811, 208232652, 479001613, 18741602894, 236107872015, 4796881689616, 20922789888017, 1618457192352018, 6402373705728019, 471378116297088020, 6105908234409984021, 153272981387362636822
OFFSET
1,2
FORMULA
If p is prime, a(p) = p + (p-1)!.
E.g.f.: Sum_{k>0} x^k/k * exp(x^k).
PROG
(PARI) a(n) = (n-1)!*sumdiv(n, d, d/(d-1)!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/k*exp(x^k))))
CROSSREFS
Sequence in context: A280037 A292557 A147442 * A025093 A025112 A203192
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 23 2024
STATUS
approved