login
A370553
a(n) is the numerator of the imaginary part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.
6
1, 3, 5, 5, 19, 35, 331, 65, 18265, 4433, 141349, 18863, 1035215, 14705, 9158903, 6702403, -34376687, -21392575, -33594289475, -2206770805, -4905856636525, -617315066615, -1713253866399725, -551582580432325, -51270656805872335, -180184164588301, -1630191679256007299
OFFSET
1,2
FORMULA
a(n) = numerator of A231531(n)/n!. - Chai Wah Wu, Feb 22 2024
EXAMPLE
See A370551.
PROG
(PARI) a370553(n) = numerator(imag(prod(k=1, n, 1+I/k)))
(Python)
from math import factorial, gcd
from sympy.functions.combinatorial.numbers import stirling
def A370553(n): return (a:=sum(stirling(n+1, k<<1, kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1)))//gcd(a, factorial(n)) # Chai Wah Wu, Feb 22 2024
CROSSREFS
KEYWORD
frac,sign,easy
AUTHOR
Hugo Pfoertner, Feb 22 2024
STATUS
approved