login
A370476
G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).
4
1, 1, 5, 38, 342, 3377, 35371, 385945, 4339656, 49932707, 585090560, 6957809536, 83757820470, 1018680937003, 12498390564184, 154508184836297, 1922689912844045, 24064811129732875, 302750645498966609, 3826284443456719470, 48557449822608739500
OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) A(x)^2 = 1 + x * A(x)^3 * (1 + A(x)^5).
(2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A370475.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n/2+5*k/2+1/2,n)/(3*n+5*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+5*k/2+1/2, n)/(3*n+5*k+1));
CROSSREFS
Cf. A370475.
Sequence in context: A207411 A316598 A228657 * A369480 A365839 A113207
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 31 2024
STATUS
approved