OFFSET
0,3
COMMENTS
Compare to Product_{n>=1} (1 - 4^n*x^n) * (1 + 4^n*x^n)^2 = Sum_{n>=0} 4^(n*(n+1)/2) * x^(n*(n+1)/2).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..630
FORMULA
a(n) ~ c^(1/4) * 2^(2*n + 2) * exp(2*sqrt(c*n)) / (5 * sqrt(3*Pi) * n^(3/4)), where c = -2*polylog(2, -1/4) - polylog(2, 1/4). - Vaclav Kotesovec, Feb 27 2024
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 60*x^4 + 348*x^5 + 1216*x^6 + 6480*x^7 + 23040*x^8 + 121152*x^9 + 445696*x^10 + 2214912*x^11 + 8475648*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 4*x^2)*(1 + 4*x^2)^2 * (1 - 16*x^3)*(1 + 16*x^3)^2 * (1 - 64*x^4)*(1 + 64*x^4)^2 * ... * (1 - 4^(n-1)*x^n)*(1 + 4^(n-1)*x^n)^2 * ...
PROG
(PARI) {a(n) = polcoeff( prod(k=1, n, (1 - 4^(k-1)*x^k) * (1 + 4^(k-1)*x^k)^2 +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2024
STATUS
approved