OFFSET
2,1
COMMENTS
This constant multiplied by the square of the side length of a regular heptadecagon equals the area of that heptadecagon.
17^2 divided by this constant equals 68 * tan(Pi/17) = 12.71140300... which is the perimeter and the area of an equable heptadecagon with its side length 4 * tan(Pi/17) = 0.74772958... .
An equable rectangle with its perimeter and area = 17 has side lengths:
a = s^2/8 = (17 - sqrt(17)) / 4 = (17 - A010473) / 4 = 3.21922359...
b = 136/s^2 = (17 + sqrt(17)) / 4 = (17 + A010473) / 4 = 5.28077640...
where s is the parameter from the formula mentioned below.
LINKS
Eric Weisstein's World of Mathematics, Heptadecagon.
Wikipedia, Heptadecagon.
FORMULA
Equals 17 / (4 * tan(Pi/17)) = 17 / (4 * A343061).
Equals 17 * cos(Pi/17) / (4 * sin(Pi/17)).
Equals 17 * cot(Pi/17) / 4.
Equals 17 * sqrt(4 / (s^2 - 2 * s - 4 * sqrt(17 + 3 * sqrt(17) - s - sqrt(17) * 16/s)) - 1/16) where s = sqrt(34 - 2 * sqrt(17)) = 4 * A329592.
The minimal polynomial is 4294967296*x^16 - 3103113871360*x^14 + 510054948143104*x^12 - 28954726431195136*x^10 + 653743432704327680*x^8 - 6011468019822067712*x^6 + 20881180982314634240*x^4 - 21552361799603318912*x^2 + 2862423051509815793.
EXAMPLE
22.7354918984165514...
MAPLE
evalf(17 / (4 * tan(Pi/17)), 100);
MATHEMATICA
RealDigits[17 / (4 * Tan[Pi/17]), 10, 100][[1]]
PROG
(PARI) 17 / (4 * tan(Pi/17))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Michal Paulovic, Feb 17 2024
STATUS
approved