%I #7 Feb 14 2024 10:48:03
%S 1,3,21,168,1425,12483,111594,1011636,9264753,85510590,794087151,
%T 7410887718,69446624910,653019755430,6158495001960,58226492157048,
%U 551725482707505,5238008159399163,49814314319342424,474467729545936650,4525387365179378775
%N Coefficient of x^n in the expansion of 1/( (1-x)^3 - x^3 )^n.
%F a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(4*n-1,n-3*k).
%F The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * ((1-x)^3 - x^3) ). See A369114.
%o (PARI) a(n) = sum(k=0, n\3, binomial(n+k-1, k)*binomial(4*n-1, n-3*k));
%Y Cf. A369114.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Feb 13 2024