login
A370283
Coefficient of x^n in the expansion of 1/( (1-x)^3 - x^2 )^n.
0
1, 3, 23, 201, 1855, 17643, 171059, 1680822, 16679031, 166763190, 1677365833, 16953705860, 172047413395, 1751870166998, 17890003430490, 183148065506136, 1879053717936423, 19315569214866495, 198890064249729314, 2051053032020625350, 21180292180328586305
OFFSET
0,2
LINKS
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(4*n+k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * ((1-x)^3 - x^2) ). See A369694.
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n+k-1, k)*binomial(4*n+k-1, n-2*k));
CROSSREFS
Cf. A369694.
Sequence in context: A372506 A241886 A096649 * A235131 A235360 A135423
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved