login
A370216
Coefficient of x^n in the expansion of ( (1+x) / (1-x^3)^3 )^n.
1
1, 1, 1, 10, 49, 151, 532, 2353, 9745, 37675, 150851, 624603, 2561476, 10426625, 42800031, 176797510, 730069649, 3016004001, 12492387775, 51845882845, 215363387699, 895504027855, 3728271696139, 15538300424315, 64812978200068, 270565786871401, 1130394586039421
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n+k-1,k) * binomial(n,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / (1+x) * (1-x^3)^3 ). See A369401.
PROG
(PARI) a(n, s=3, t=3, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial(u*n, n-s*k));
CROSSREFS
Cf. A369401.
Sequence in context: A217165 A154066 A056578 * A307904 A226797 A163716
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 12 2024
STATUS
approved