OFFSET
1,9
COMMENTS
The polygon prior to dissection will have n*(k-2)+2 sides.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
Wikipedia, Fuss-Catalan number
EXAMPLE
Array begins:
=============================================
n\k| 3 4 5 6 7 8 9 10 ...
---+-----------------------------------------
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 1 1 1 1 1 1 ...
3 | 1 3 2 4 3 5 4 6 ...
4 | 2 4 4 6 6 8 8 10 ...
5 | 2 12 9 26 21 45 38 69 ...
6 | 5 18 22 45 51 84 92 135 ...
7 | 5 55 52 204 190 500 468 992 ...
8 | 14 88 140 380 506 1008 1240 2100 ...
9 | 14 273 340 1771 1950 6200 6545 15990 ...
...
PROG
(PARI) \\ here u is Fuss-Catalan sequence with p = k-1.
u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
T(n, k) = {if(k%2, if(n%2, u((n-1)/2, k, (k-1)/2), u(n/2-1, k, (k-1))), if(n%2, u((n-1)/2, k, k/2+1), u(n/2-1, k, k)) )}
for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 08 2024
STATUS
approved