login
A369965
a(n) = 1 if n is of the form 4m+2 and it has an even number of prime factors with multiplicity, otherwise 0.
3
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
OFFSET
0
FORMULA
All these formulas should be computed with a shortcut multiplication, which ignores the right hand side expression if the left hand side yields zero:
a(n) = A121262(2+n) * A065043(n).
a(n) = A165560(n) * A065043(n).
a(n) = A059841(n) * A353558(n/2).
PROG
(PARI) A369965(n) = (2==(n%4) && !(bigomega(n)%2));
CROSSREFS
Characteristic function of A369966.
Cf. A369660 [= a(A003415(n))].
Sequence in context: A070108 A341995 A369655 * A011675 A096094 A265757
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 08 2024
STATUS
approved