login
A369774
Maximal coefficient of (1 - x) * (1 - x - x^2) * ... * (1 - x - x^2 - ... - x^n).
2
1, 1, 1, 2, 3, 8, 13, 63, 167, 1227, 5240, 46958, 297080, 3108808, 26714243, 325635647, 3535022425, 49403859787, 646713449897, 10221697892707, 156049674957354, 2756431502525358, 48028121269507891, 940216720983170113, 18359095114316009613
OFFSET
0,4
MATHEMATICA
Table[Max[CoefficientList[Product[(1 - Sum[x^j, {j, 1, i}]), {i, 1, n}], x]], {n, 0, 24}]
PROG
(PARI) a(n) = vecmax(Vec(prod(k=1, n, 1 - sum(i=1, k, x^i)))); \\ Michel Marcus, Feb 01 2024
(Python)
from collections import Counter
def A369774(n):
c = {0:1}
for k in range(1, n+1):
d = Counter(c)
for j in c:
a = c[j]
for i in range(1, k+1):
d[j+i] -= a
c = d
return max(c.values()) # Chai Wah Wu, Feb 01 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2024
STATUS
approved