login
A369756
Expansion of e.g.f. exp( (1 - (1+x)^5)/5 ).
2
1, -1, -3, -1, 49, 255, -275, -13105, -83775, 170495, 8290045, 69257055, -111005135, -9684015745, -109196883795, -31470300625, 17728458119425, 276531029694975, 904537471692925, -44728487203650625, -1000823562359108175, -7110596979389965825
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..min(5,n)} binomial(4,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 5^k * Stirling1(n,k) * Bell_k(-1/5), where Bell_n(x) is n-th Bell polynomial.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1-(1+x)^5)/5)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 31 2024
STATUS
approved