login
A369753
Expansion of e.g.f. exp(1 - (1+x)^5).
2
1, -5, 5, 115, -95, -8245, -21275, 896275, 8801825, -95466725, -2703832475, -3522650125, 717727962625, 9961465952875, -118944021914875, -5634631318806125, -37511809003469375, 2020875725751906875, 55489065505990733125, -65182838564153418125
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = -5 * (n-1)! * Sum_{k=1..min(5,n)} binomial(4,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 5^k * Stirling1(n,k) * A000587(k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^5)))
CROSSREFS
Column k=5 of A369738.
Sequence in context: A081049 A048607 A229767 * A215729 A364452 A094463
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 30 2024
STATUS
approved