login
A369752
Expansion of e.g.f. exp(1 - (1+x)^4).
1
1, -4, 4, 56, -104, -2464, 1696, 181184, 462016, -17069824, -141580544, 1593913856, 33015560704, -47193585664, -6973651011584, -50207289585664, 1214484253413376, 25500259291480064, -72069247145590784, -8696105637665603584, -81680899029758541824
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = -4 * (n-1)! * Sum_{k=1..min(4,n)} binomial(3,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 4^k * Stirling1(n,k) * A000587(k).
D-finite with recurrence a(n) +4*a(n-1) +12*(n-1)*a(n-2) +12*(n-1)*(n-2)*a(n-3) +4*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 02 2024
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[1-(1+x)^4], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 29 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^4)))
CROSSREFS
Column k=4 of A369738.
Sequence in context: A322099 A009644 A196180 * A156483 A212328 A214615
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 30 2024
STATUS
approved