login
Number of solutions to +- 1^2 +- 2^2 +- 3^2 +- ... +- n^2 = 1.
2

%I #7 Jan 30 2024 16:01:12

%S 0,1,0,0,0,0,2,0,0,5,2,0,0,13,43,0,0,193,274,0,0,1552,3245,0,0,18628,

%T 31048,0,0,188536,372710,0,0,2376996,4197425,0,0,27465147,53072709,0,

%U 0,351329160,650125358,0,0,4398613111,8429649875,0,0,57629346805,108986428106

%N Number of solutions to +- 1^2 +- 2^2 +- 3^2 +- ... +- n^2 = 1.

%F a(n) = [x^1] Product_{k=1..n} (x^(k^2) + 1/x^(k^2)).

%p b:= proc(n, i) option remember; `if`(n>i*(i+1)*(2*i+1)/6, 0,

%p `if`(i=0, 1, b(n+i^2, i-1)+b(abs(n-i^2), i-1)))

%p end:

%p a:=n-> b(1, n):

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Jan 30 2024

%t Table[Coefficient[Product[(x^(k^2) + 1/x^(k^2)), {k, 1, n}], x, 1], {n, 0, 48}]

%Y Cf. A000290, A063866, A158092, A348165, A350403, A369731, A369732.

%K nonn

%O 0,7

%A _Ilya Gutkovskiy_, Jan 30 2024