login
A369708
Maximal coefficient of (1 + x^3) * (1 + x^5) * (1 + x^7) * ... * (1 + x^prime(n)).
2
1, 1, 1, 1, 1, 1, 2, 2, 4, 5, 8, 14, 23, 40, 70, 126, 221, 394, 711, 1290, 2354, 4344, 8015, 14868, 27585, 51094, 95160, 178436, 335645, 634568, 1202236, 2261052, 4267640, 8067296, 15318171, 29031484, 55248527, 105251904, 200711160, 383580180, 733704990
OFFSET
0,7
MAPLE
b:= proc(n) option remember; `if`(n<2, 1, expand(b(n-1)*(1+x^ithprime(n)))) end:
a:= n-> max(coeffs(b(n))):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 29 2024
MATHEMATICA
Table[Max[CoefficientList[Product[(1 + x^Prime[k]), {k, 2, n}], x]], {n, 0, 40}]
PROG
(PARI) a(n) = vecmax(Vec(prod(i=2, n, 1+x^prime(i)))); \\ Michel Marcus, Jan 29 2024
(Python)
from collections import Counter
from sympy import prime
def A369708(n):
c = {0:1}
for i in range(2, n+1):
p, d = prime(i), Counter(c)
for k in c:
d[k+p] += c[k]
c = d
return max(c.values()) # Chai Wah Wu, Jan 31 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 29 2024
STATUS
approved