login
A369696
Number of unordered pairs (p,q) of partitions of n such that the set of parts in q is equal to the set of parts in p.
3
1, 1, 2, 3, 5, 8, 12, 19, 27, 42, 61, 91, 130, 192, 271, 401, 556, 802, 1126, 1597, 2217, 3132, 4315, 6003, 8257, 11370, 15527, 21251, 28798, 39043, 52722, 70911, 95047, 127155, 169431, 225072, 298362, 393946, 519294, 682090, 894251, 1168258, 1524370, 1981554
OFFSET
0,3
LINKS
FORMULA
a(n) = (A000041(n) + A369695(n))/2.
EXAMPLE
a(5) = 8: (11111, 11111), (2111, 2111), (2111, 221), (221, 221), (311, 311), (32, 32), (41, 41), (5, 5).
MAPLE
b:= proc(n, m, i) option remember; `if`(n=0,
`if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(add(
b(sort([n-i*j, m-i*h])[], i-1), h=1..m/i), j=1..n/i)))
end:
a:= n-> (b(n$3)+combinat[numbpart](n))/2:
seq(a(n), n=0..50);
MATHEMATICA
b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1] + Sum[Sum[b[Sequence @@ Sort[{n-i*j, m-i*h}], i-1], {h, 1, m/i}], {j, 1, n/i}]]];
a[n_] := (b[n, n, n] + PartitionsP[n])/2;
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 29 2024
STATUS
approved