login
A369507
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3+x^3)^2 ).
0
1, 6, 51, 508, 5535, 63888, 767689, 9502254, 120324606, 1551362160, 20296839585, 268785905790, 3595951246855, 48528885742200, 659856371680971, 9031161933443468, 124319953470044970, 1720113658097639532, 23908612149570793386, 333680424238179500976
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(6*n-3*k+6,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3+x^3)^2)/x)
(PARI) a(n) = sum(k=0, n\3, binomial(2*n+2, k)*binomial(6*n-3*k+6, n-3*k))/(n+1);
CROSSREFS
Sequence in context: A199685 A225615 A002295 * A215159 A263895 A027393
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2024
STATUS
approved