login
A369506
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3+x^2)^2 ).
0
1, 6, 53, 548, 6192, 74074, 922142, 11822082, 155024190, 2069570934, 28033435791, 384329462490, 5322745393480, 74357950874850, 1046564375245893, 14826433687124098, 211251475010201934, 3025331234242178508, 43523061969049245589, 628692982662691174722
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(6*n-3*k+6,n-2*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3+x^2)^2)/x)
(PARI) a(n) = sum(k=0, n\2, binomial(2*n+2, k)*binomial(6*n-3*k+6, n-2*k))/(n+1);
CROSSREFS
Sequence in context: A055973 A223345 A362907 * A066357 A276365 A185148
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2024
STATUS
approved