login
Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^3) ).
3

%I #11 Jan 24 2024 05:59:26

%S 1,4,25,185,1503,12958,116410,1077872,10213954,98574454,965545161,

%T 9574235477,95920415338,969467658540,9872949735243,101211280459929,

%U 1043597450013094,10816134194658976,112617367970103163,1177413807406659659,12355753915291229596

%N Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^3) ).

%F a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+3,k) * binomial(4*n-k+4,n-2*k).

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^3))/x)

%o (PARI) a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

%Y Cf. A106228, A369477.

%Y Cf. A365128, A369480.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jan 23 2024